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Numerical simulation of free convective 
flow using the lattice-Boltzmann scheme 
J. G. M. Eggels and J. A. Somers 
Koninklijke/ShelI-Laboratorium, Amsterdam, The Netherlands 

Free convective flow in a square cavity at Ra = 10 6 and Pr = 0.71 is considered using 
the lattice-Boltzmann discretization scheme. This scheme is a new type of simula- 
tion method for solving the time-dependent Navier-Stokes equations in an incom- 
pressible flow regime. It has been extended by a scalar transport equation and by a 
coupling of the scalar quantity with the momentum equations to enable simulations 
of nonisothermal flows. A fairly simple flow configuration with fixed temperature 
vertical walls and adiabatic horizontal walls has been selected as a test case to study 
the performance of the extended lattice-Boltzmann scheme. Various flow quantities 
related to different regions of the convective flow, such as vertical and horizontal 
boundary layers and the core region, agree well with benchmark data and demon- 
strate the potential of the lattice-Boltzmann scheme for numerical simulations of 
flows with (multicomponent) scalar transport. 
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Introduction 

The lattice-Boltzmann discretization scheme is a new type of 
direct simulation method for solving the time-dependent 
Navier-Stokes equations in an incompressible flow regime. The 
technique originates from the kinetic theory of lattice gases. The 
continuous flow equations are derived from a discrete version of 
the Boltzmann equation that describes the macroscopic behavior 
of a microscopic world of particles moving on a finite lattice 
(Frisch et al. 1987). Various authors have demonstrated the 
potential of the lattice-Boltzmann technique, considering numeri- 
cal accuracy, numerical robustness, flexibility with respect to 
complex boundaries, computational efficiency, and the high spa- 
tial and temporal resolutions that can be achieved on given 
computer resources (McNamara and Zanetti 1989; Succi et al. 
1992; Chen et al. 1992; Somers 1993). When an appropriate 
subgrid scale (SGS) turbulence model is incorporated, large-eddy 
simulations of complex turbulent flows at Reynolds numbers of 
above 100,000 can be performed on three-dimensional (3-D) 
grids using moderate resolutions of less than a million grid 
points. 

This paper presents the first results of our effort to incorporate 
convective and diffusive scalar transport into the lattice-Boltz- 
mann discretization scheme. The ultimate objective is to include 
heat and mass transport capabilities into our lattice-Boltzmann 
large-eddy simulation tool to study engineering problems encoun- 
tered in complex turbulent flows. Massaioli et al. (1993) have 
already reported simulations of thermal flows using the lattice- 
Boltzmann scheme, focusing on the probability density function 
of temperature fluctuations in low-Rayleigh number Rayleigh- 
B6nard convection. The present work, in contrast, considers the 
steady flow in a square cavity with heated and cooled side wails 
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in which a proper description of the flow in the thin vertical 
boundary layers is the critical issue. In addition to a complete 
description of the implementation of the momentum and scalar 
transport equations in the lattice-Boltzmann framework, the pre- 
sent results are compared in detail with numerical results ob- 
tained using different numerical techniques. 

The next section of this paper recapitulates the lattice-Boltz- 
mann discretization and briefly describes how a possible 
subgrid-scale turbulence model fits in. An extension of the 
scheme with a scalar transport equation is then proposed, and the 
boundary conditions for the momentum and scalar transport 
equations are addressed. Finally, a numerical validation of the 
implementation of the scalar transport equation and the coupling 
between the scalar quantity and the momentum equations is 
presented for a free convective flow in a square cavity. 

L a t t i c e - B o l t z m a n n  equa t ion  

The lattice-Boltzmann equation specifies the ensemble average 
behavior of a lattice gas in which discrete particles of unit mass 
move with unit speed along the edges of a regular lattice (Mc- 
Namara and Zanetti 1989). Two- and three-dimensional (2-D and 
3-D) projections of the four-dimensional (4-D) face-centered-hy- 
per-cubic (FCHC) lattice are commonly used for simulations of 
the Navier-Stokes equations (d'Humi~res et al. 1986). This 
FCHC lattice spans a 4-D space with 24 velocity directions e i at 
each grid point. Figure 1 depicts the 2-D and 3-D projections of 
this lattice with 9 and 18 velocity directions ci, respectively, and 
weight factors m i representing the multiplicity of the edges 
caused by the projection. 

The lattice-Boltzmann scheme solves the lattice-Boltzmann 
equation directly without instantiating a discrete lattice gas, but 
operationally the procedure is very similar. A dimensionless mass 
density N i is associated with each velocity direction c i at each 
position x and time t. The evolution of the scheme involves two 
steps: a propagation step that shuffles all variables so that mass 
density N~ at position x moves to position x + ¢i, and a collision 
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2D-FCHC 

Figure I The two- and three-dimensional projections of the 
face-centered-hyper-cubic lattice correspond to an ordinary 
square and cubic lattice with 9 and 18 velocity directions c i, 
respectively; the numbers along the edges indicate their multi- 
plicities m i, which, according to the original four-dimensional 
lattice, satisfy E;m~ = 24 

step that redistributes the mass densities among the velocity 
directions at each grid point locally. Basically, the scheme solves 
the following set of coupled partial differential equations: 

OtN i + c i • V N  i = h i ( N )  (1) 

The so-called collision operator fli(N) will depend in a nonlinear 
way on all components of the mass density vector N and is 
constrained by the basic conservation laws of mass and momen- 
tum: 

E n i ( N )  = 0 E c i I ~ I ( N )  = f (2) 
i i 

The vector f(x, t) represents an optional external force that 
accelerates the flow; e.g., caused by gravity or buoyancy. Ac- 
cording to the kinetic theory of lattice gases (Frisch et al. 1987), 
Equation 1 is equivalent to the Navier-Stokes equations, pro- 
vided that an f l i  operator is used that guarantees convergence of 
the lattice-Boltzmann scheme toward the following equilibrium 
solution for the N/(x, t) variables: 

N/=  -~4P{1 + 2c i • u 

+ 3 [ C i C i :  UU --  l t r ( u u )  + cici :  "r - ½tr('r)] 

- 6 v [ ( c i .  V)(Ci"  U) -- ½V" U] + e ( U  3, UVU)} (3) 

with p = p(x, t ) =  5~iN/(x, t), pu = p(x, t)u(x, t ) =  ~iciN/(x, t) 
and v the kinematic viscosity. * The higher-order terms denoted 
by @(u 3, uVu)  represent unwanted errors and are considered in 
more detail later. The turbulent stress tensor ,r is new in our 
lattice-Boltzmann scheme. It arises from unresolvable velocity 
fluctuations at a scale smaller than the lattice spacing and ac- 
counts for the so-called subgrid scale effects in large-eddy simu- 
lations (LES) of turbulent flows. In laminar flows or direct 
simulations of turbulent flows in which the lattice is capable of 
resolving all scales of the flow, "r vanishes (see Eggels 1994 for 
details). 

* All f low variables and fluid properties, such as u, p, and v, are 
scaled in the latt ice-Boltzmann concept to dimensionless 
quantities within certain ranges (e.g., Ilull <0.2, 0~8 ,  and 
0.25 < v < 0.00001). In the remainder of this paper, all f low 
variables and fluid properties are assumed to be dimensionless 
and scaled in this way, unless stated otherwise. 

Notation 

a thermal diffusivity 
Cia a-component of c i 
Ci,C j velocity direction vector 
C scalar quantity 
Eik,E]i  filter matrix and its inverse 
f external force vector 
F ± fourth-order terms 
g non-zero component of g 
g gravitation vector 
H cavity height ( =  width) 
I identity matrix 
m i weight factor for direction c/ 
n dimensionality of density vectors (9 in 

2-D, 18 in 3-D) 
N,.(x, t), Nj(x, t) mass density in direction c/, c j, respec- 

tively 
N mass density vector of length n 
Nu Nusselt number 
P pressure 
Pr Prandtl number 
Qi(x,  t), Qj(x, t) scalar density in direction ci, cj respec- 

tively 
Q scalar density vector of length n 
Ra Rayleigh number 
S stratification parameter 
S ± second-order terms 1,2,3 

t 
T 

L 
T ± 1,2 
U 
Ux~ Uy 
U 
U 
X, y 

Greek 

'~ 2 ' '~ 3 

A T  
V 

P 
~x'  O'y 
O" 

"rxx ~ Txy ~ Tyy 
T 
% 

l l i  

time 
temperature 
reference temperature 
third-order terms 
velocity component (horizontal) 
components of u 
velocity vector 
velocity component (vertical) 
position vectors 

solution vectors containing flow variables 
thermal expansion coefficient 
coefficients for reduction of the higher- 
order terms 
Kronecker delta 
temperature difference 
kinematic viscosity 
density 
components of o 
subgdd scale flux vector 
components of ,r 
subgrid scale stress tensor 
scalar density collision operator in direc- 
tion c i 
mass density collision operator in direc- 
tion c i 
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Substitution of Equation 3 into 1 and carrying out the summa- 
tion over all i, thereby using ~ i l " ~ i ( N ) =  0 and the symmetry 
properties of the FCHC lattice: 

~imi = 24 

~ i m i c i a  = 0 

~imicictci f~ = 12~13 

~imicicLcif3ci~/ = 0 

~imiciaci[3Ci.tCi~ = 45,~ff5~ + 45~5a~ + 45~513 ~ (4) 

with cia, cia, civ, and ci, ~ denoting the x-, y-, or z-component of 
c i and 5~j~ the Kronecker delta, yields the following equation for 
conservation of mass: 

a,p + v .  pu = 0 (5) 

The equations for conservation of momentum are obtained by 
multiplication of Equation 1 by c~ and subsequent substitution of 
Equation 3. After summation over i using the constraint 
E icilli(N) = f and the symmetry properties given by Equation 4, 
we find: 

atPU + V • pUU + V • pT 

= - V P + V ' o v [ V u + ( V u )  r] - V ( ½ p v V ' u )  + f  (6) 

with the following equation of state for the pressure P: 

P = ½P{1 - ½[tr(uu) + tr(,r)]} (7) 

The higher-order terms in Equation 3 have been neglected in this 
derivation. Inclusion of these terms would have caused additional 
terms in Equations 5-7, thereby giving rise to macroscopic fluid 
flow equations that deviate from the Navier-Stokes equations. 
For accurate simulations of fluid flows according to the Navier- 
Stokes equations, it is, therefore, necessary to minimize the 
effects of the higher-order terms on N~. How this is achieved in 
our simulations is discussed later. 

Having defined the desired solution for N~(x, t) by Equation 
3, we still need to specify the collision operator I-I~(N) in such a 
way that the scheme, indeed, converges to this equilibrium 
solution. Therefore, we consider the staggered formulation of the 
lattice-Boltzmann equation: 

N / ( x +  ~ ~c,, t + ½ )  =N/{'x - 1  • t -  3) + a (N) (8) 
1 1 With help of a Taylor-series expansion of N,.(x + -~ci, t + $) and 

N / ( x -  1 1 , ~c~, t -  ~). 

N/(x _{_1 1 • VN/(x, t)   ci, t ±  ½) =N,(x, t) ± 

± ½OtN/(x, t)  + h.o.t. (9) 

and substitution of N~(x, t) from Equation 3, we obtain: 

a (s) =E(x+ $ci, t +  1) - N / ( x  ' 

= C i • VN/(x, t )  + OtN~-(x, t)  + h.o.t. 

mip 
12 [(ci  V)(,Pi  U) -- I V "  U] m i  • - • • + " ] ~ c i  f +  h . o . t .  

(10) 

thereby using 0tp . . . .  - V  pu and 0tpu ½Vp + f +  
~'(Vu 2, VEu) (Seiners 1993). The h.o.t, in Equation 10 contain, 
among contributions related to the lattice spacing and the time- 
step, terms of the form u .  Vp, which are small in the incompress- 
ible limit. It can easily be verified that the fli(N) operator of 
Equation 10 indeed, satisfies the basic conservation laws of 
Equation 2. 

The collision operator shows a great similarity with the 
viscous term in the equilibrium solution of Equation 3 which 

makes its implementation in the lattice-Boltzmarm scheme fairly 
straightforward. From Equations 9 and 10 with neglect of the 
h.o.t., we get: 

Ni(x ± lci,  t ±  3) = Ni(x, t) ± ½fti(N) (11) 

which can be rewritten in terms of a n × n filter matrix Eik and a 
solution vector a~(x, t) as: 

N i ( x  ± 1 m i  n ± 2ci, t±½)=-~lr~lE, k{~k(X,t ) i = 1  . . . . .  n 

(12)  

In two dimensions with n = 9, Eik and c~(x, t) are given by: 

[1,  2Cix, 2cly, 3(C2x--½), 6CixCiy, 3 (c2y- -½) , ]  

Elk= Cix(3C2y 1), ciy(3C2x - 1), 3(c2x_ 2 2 -- Ciy ) -- 2 

and 
(13) 

1 1 
p, pUx + f ix ,  pUy + f ly ,  

p( u~u~ + ~x)  + P( ± I 
g )(2axu ), 

6v 

t ) =  p(u.uy+%)+o( _ + l - 6 v  

+ Tyy)  + p (  "1-1 - 6 v  
-~ )(2~yUy), p(UyUy  

r l  + , t 2  ~: ,F + 

(14) 

We return to the higher-order terms T1 ± through F ± later. The 
matrix Eik is formulated in such a way that its inverse Eli can be 
determined directly as: 

1, Cix, Ciy , ~Cix + ~Ciy - 1, CixCiy , ~Ciy + ~Cix-  1, 

E l i=  Cix(3C2y-- 1), Ciy(aC2x - 1 ) ,  3 2 2 2 ~(c ,x-  c,~) - 1 

with 

E~i ~4 Elk = miE E1 - 24 ik ki --  I 

(15) 

(16) 

The procedure for marching in time is now as follows: 
First, determine the n elements of the solution vector ot ~(x, t) 

from the known distribution N/(x _ ~ci,1 t -  1) as: 
n 

cx~-(x, t)  = Y'~ EIiNi(x _ 1  = . (17) ~c i, t -  3) k 1 . . . .  n 
i= l  

Second, compute the elements of c~-(x, t) from c~(x,  t) 
using Equation 14 and taking into account the following consid- 
erations: 
(1) The components of the external force vector f are known, so 

the velocity components u x and uy in ct~(x, t) can be 
computed. The total stresses can also be computed, but an 
additional SGS turbulence model is needed for x,x and 
others to separate the shear rates Oxu x and so on from the 
total stresses. The details of possible SGS stress models are 
beyond the scope of this paper, but can be found in Somers 
(1993) and Eggels (1994). In the present study, only laminar 
flows are considered for which ,r (and or) are zero by 
definition. 

(2) The terms T1 ±, T2 ~, and F + in Equation 14 represent two 
third-order and a fourth-order contribution in Equation 3 and, 
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in addition, contain the neglected higher-order terms in Equa- 
tion 9. Especially in low-viscosity regimes, these modes limit 
the numerical accuracy of the lattice-Boltzmann scheme. 
However, a more accurate study of the higher-order terms in 
Equation 9 reveals that T 1 and T 2 merely change sign in the 
collision step, and hence can be accounted for in the Di(N) 
operator. This is achieved by imposing T~- = -73T~- and 
T~-= -~/3T2 with ~/3 an adjustable coefficient of order 
unity. The advantage of this approach is that the third-order 
terms T12 in etk(x, t)associated with N/(x, t)become of the 
form ~(1--~3)TL2. * With ~/3 around 0.8, the leading 
higher-order terms in N,.(x, t) are of the order of 0.1 T~, 2 
with this approach. A similar approach is not applied for the 
fourth-order term F because of its smaller magnitude. In 
general, F += 0 is imposed in our simulations. 

et k (x, t) as Third, having determined the elements of + 

1 1 
P, PUx + J x ,  pUy + 2fy, 

( + 1 - - 6 v )  
P(UxU~ + "rxx) + P 6 (2axU~)' 

( + 1 - - 6 v )  
ct~-(x, t) = P(UxUy + rxy ) + p 6 (0xuy + OyUx) , 

( + l - - 6 v )  
p(UyUy + 'ryy) + p 6 (2i~yUy), 

-- ~t3Tt, -- ~3T2, 0 

(18) 

the filter matrix Eik is used to compute the lattice-Boltzmann 
1 1 variables N/(x + ~ci, t + ~) from Equation 12. 

Fourth, after this collision step, all lattice-Boltzmann vari- 
1 1 ables N~(x + ~c~, t + ~) are shuffled during the propagation step 

1 1 such that the mass density N/(x + ~c;, t + ~) associated with the 
grid point at position x moves to the grid point at position x + c i 
to become Ni(x -- 1 1 7Ci, t -  ~) for the next time-step. 

Scalar transport in the lattice-Boltzmann 
framework 

To include heat and mass transfer in the lattice-Boltzmann 
simulations, a scalar transport equation of the form 

OtPC + V. puC + V. ptr = V. paVC (19) 

with C(x, t) the scalar quantity and a the diffusion coefficient, 
needs to be solved. The flux vector ~ accounts for SGS effects 
in large-eddy simulations and is comparable to the SGS stress 
tensor ,r in the momentum equations. In analogy to the mass 
density distribution Ni(x, t), the scalar density ai(x, t) along 
velocity direction e~ is introduced. In a straightforward way 
C(x,t) is related to Qi(x, t) as: 

p(x, t)C(x, t ) =  E Qi( x, t )  (20) 
i 

The evolution of Qi(x,  t)  is again governed by a set of coupled 
partial differential equations: 

OtQ i + c i • VQ i = *i (Q)  (21) 

* 1 t + ½ ) +  1 1 1 Recall that Ni(x,  t) = ½Ni(x + ~c i, ~-Ni(x - ~c i, t -  ~) 
by definition of Equation 9 and that the solution vector CXk(X, t) 

~c~ k (X, t) + 1 - t) because of Equation 12. So, t hus  equals 1 + ~Ot k (X, 
the  t h i r d -o rde r  t e r m s  in e(k(x, t) are equa l  to:  T1,2 = ~ T1,2 + ~ T 1 , 2 1  + 1 - 

= - ½"Ys r~,-2 + ½ T~3 = ½(1 -v3)T~ a .  

with q~i(Q) the scalar density collision operator, similar to I)i(N) 
in Equation 1. To derive Equation 19 from 20 and 21, the 
equilibrium solution for Qi(x, t) should be related to p, u and C 
at position x and time t as follows: 

miP [C + 2c/. uC + 2ci . f f  -- 2ci '  aVC + : ( V z C ,  uVC)] Q/= - ~  

(22) 

Equation 19 is now obtained by substituting Equation 22 into 
Equation 21, neglecting the h.o.t, and carrying out the summation 
over all i, thereby using the conservative property of the scalar 
density collision operator [Ei~i(Q) = 0] and the symmetry of the 
lattice as given by Equation 4. 

The analysis presented earlier for the derivation of the colli- 
sion operator ~ ( N )  can also be carried out for the scalar 
collision operator xtt/(Q). From the Taylor-series expansion, we 
then obtain: 

miP 
a i (  x -t- ½ci, t-t- ½) = Oi(x,  t) -t- "--~-C i " ~C -~- ~(V2C,  u~C ) 

(23) 

and consequently: 

mip 
xI~i(Q) = - ~ - c  i • VC + h.o.t. (24) 

To illustrate the minimization of the higher-order modes in 
the scalar transport scheme, the final result for ai(x --"~ -2C i , 1  t -I- -~)1 
in terms of the solution vectors I~(x, t) with physical modes C, 
0~C and arC and the higher-order modes S 1 through F is given 
here: 

' . . ,  (25) ~k-(X, t ) =  EkiQi( x -- I ~Ci, t--  ½) k = 1,. n 
i=l 

and 

mi ~. + 
a i ( x +  1 : , ,  t+  ½) = _ ( x ,  t )  

k = l  

with Elk as in 
a s :  

i=  l , . . . , n  

(26) 

Equation 13, Eli as in Equation 15 and 13ff (x, t) 

13;(x, t)= 

13~-(X, t )  = 

~C, 
( - 1 - 4 a )  

)(UxC + trx) + P 4 OxC' 

(,4o) 
p (  UyC + O'y)  -~- p 4 ayC, 

S/-, S2, S3, 
T1,T~,F- 

)C, 
( + l - 4 a )  

) (uxC + trx) + P 4 OxC, 

(+1-4a) 
o(u , c  + tr,) + o -----i---  a,c, 

- ~ 1 2 S { ,  - ~ 1 2 S 2 ,  - ~ 1 2 S ~ ,  

O, O, 0 

(27) 

The density p and the velocity components u x and uy are 
known from ct~-(x, t) when solving the scalar C and the total 
fluxes. Again, a turbulence model for the SGS flux components 
%, and try is required to separate the scalar gradients from the 
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total fluxes. The time integration procedure is the same as 
discussed before for the mass densities: first compute 13~-(x, t) 
from Q i ( x -  1 t -  1 7ci, 7) using Equation 25, next determine 

+ 13~ (x, t) from 13~-(x, t) with the aid of Equation 27, then obtain 
the new scalar densities Qi(x + 7ci,~ t + ½) from Equation 26, 
and finally shuffle Qi at every grid point to end up with 
Q i ( x - l c  i, t - ½ ) .  Similar as for Ni, the magnitude of the 
second-order modes is suppressed here by taking 0.80 < ~/2 < 
0.95. The third- and fourth-order modes T~, 2 and F + are taken 
equal to zero. 

B o u n d a r y  condi t ions 

In all simulations described below, no-slip velocity conditions are 
imposed on the rigid walls of the cavity. Fixed temperatures 
(Dirichlet conditions) are prescribed on the vertical walls, whereas 
the horizontal walls are perfectly insulated (Neumann conditions). 
These boundary conditions are effectuated in the simulations by 
proper choices of the mass and scalar densities entering the 
computational domain through the boundaries during the propa- 
gation step. 

Suppose that boundm T conditions must be imposed at position 
1 (boundaries must coincide with the edges of the lattice), X + ~C i 

then Equations 3 and 22 can be used to compute N/(x + 1 7 C i ,  
1 i~.~_ 1 t + ½) and Qi(x + 7ci, 7) at the boundary using p, u and so 

1 1 on at (x + 7ei, t +  7). Next, we define the mass and scalar 
densities Nj(y + ½e j, t-F ½) and Qj(y + ½c j, t + ½) in direction 
ej on the boundary at position y + ½cj. Nj(y + ½ej, t + ½) and 

1 1 Qj(y + 7e j, t + 7) are appointed as the densities entering the 
domain at that position where N/(x + 1 7ci, t + 7) and Qi(x + 
1 1 7ci, t + 7) leave the domain during propagation. This can only 
be achieved by enforcing y = x + c i and cj = - c  i, such that 

1 1 • - y + 7cj - x + 7ci. The lmplementatmn of the boundary condi- 
tions has, thus, been shifted toward finding expressions for 

1 1 Nflx + 7el, t + 7) and Qj(x + 1 1 7ci, t + 7) in terms of Ni(x + 1 7 C i ,  

t + ½) and Qi(x + 1 1 7ei, t + 7) together with the conditions at the 
boundary. The difference between N/(x + 1 1 7ci, t +  7) and Nj(x 

1 1 + 7c/, t + 7) can be obtained from Equation 3: 

miP 
N / ( X +  ½Ci,  t+½) --Ni(X+½Ci, t+J)  = T{Ci'U} ( 2 8 )  

with p and u given at (x + 1 1 7Ci, t +  ~). For no-slip velocity 
conditions (u = 0), Equation 28 reduces to: 

N j ( x +  ~ 7ei,  t +  ½) = N i ( x  + 1 7ei, t + ½) (29) 

which effectuates a "bounce-back" condition for the ensemble 
average behavior of the particles. For the scalar densities, we find 
from Equation 22, assuming ~r = o :  

Qi(x 1 + 7 e i ,  t + ½) - Qj (x  + 7ci,  t + ½) 

mip 
- 6 {ci" u C -  c i ' aVC} (30) 

For a perfectly insulated rigid wall with u C - - a V C  = o, this 
reduces to: 

Q](x a ] + 7Ci, t + ½) = ~)i(X + "~Ci, t + ½) (31) 

To implement a Dirichlet condition for C at a rigid wall, we 
add the expressions for Qj and Qi as given by Equation 22 to 
obtain: 

Qi(x+~ei, t+½)  + Q j ( x +  ~ci, t + ½ )  = {C} (32) 

H 

Th g 

Y 

T °° a,T=O 
X 

Tc 

H 

Figure 2 Flow configuration for a free convective f low inside a 
square cavity with height and width equal to H 

with p and C again given at (x 1 i + 7ci, t +  7). The incoming 
scalar densities Qj are thus, computed as: 

Q j ( x + T c i ,  t+ 2) = C - Q i ( x  + ~ci,] t + ½ )  (33) 

Free convect ive  cavi ty  f l o w  

To evaluate the performance of the lattice-Boltzmann scheme 
extended with a scalar transport equation and a coupling of the 
scalar quantity with the momentum equations via the external 
force vector f(x, t), the free convective flow inside a square 
cavity is considered as a test case. The flow configuration is 
fairly simple and consists of a 2-D square cavity with a hot 
vertical wall on one side and a cold vertical wall on the opposite 
side (see Figure 2). The horizontal bottom and top walls are 
considered to be perfectly insulated. Detailed numerical bench- 
mark data on this flow configuration are reported by Henkes 
(1990) and Janssen (1994). 

A free convective flow can be characterized by two dimen- 
sionless parameters: the Rayleigh number Ra and the Prandtl 
number Pr 

g~ATH 3 v 
Ra Vr = - (34) 

l~a a 

with g the acceleration due to gravity, [3 the coefficient of 
thermal expansion, AT the temperature difference between the 
two vertical walls and H the height ( =  width) of the cavity. For 
the present test case, we restricted ourselves to the laminar 
regime using Ra = 106 and Pr = 0.71 (air). Hence, the SGS stress 
tensor "r in Equation 3 and the SGS flux vector ¢r in Equation 22 
are equal to zero. 

The coupling between the scalar quantity (temperature) and 
the momentum equations is established by means of the Boussi- 
nesq approximation. Within this approximation, it is assumed that 
all fluid properties (density, viscosity, thermal diffusivity) can be 
considered constant. Small density variations that drive the con- 
vective flow as a result of small temperature variations are 
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o. x /H  1. 

Figure 3 Streamlines of the convective f low in the square 
cavity at Ra = 10 s and Pr = 0.71 

c~ 

0. x /H 1. 

Figure 4 Isotherms of the convective f low in the square cavity 
at Ra = 106 and Pr = 0.71 

accounted for in the momentum equations via the force vector f, 
which is directly proportional to the temperature variations: 

f = - p r o g f S ( T  - T o )  (35) 

with T o a reference temperature. The reason for using the Boussi- 
nesq approximation rather than the straightforward relation f = 
Prg is that the temperature does not appear explicitly in the 
equation of state related to the lattice-Boltzmann scheme. The 
influence of temperature on density is, therefore, effectuated 
using Equation 35. 

Figures 3 and 4 show the streamlines and isotherms of the 
convective flow in the cavity, respectively. Vertical flow occurs 
in the thin boundary layers along the vertical walls. The core 
region is largely stratified and the velocity magnitudes are small 
in this region. Temperature and velocity gradients are large in the 
vertical and, to a lesser degree, horizontal boundary layers and, 
therefore, sufficient spatial resolution is required near the walls to 
capture these large spatial variations accurately. A disadvantage 

of the present discretization scheme is that it only allows for a 
u n i f o r m  grid throughout the complete computational domain 
because of the required symmetry of the lattice (see Equation 4). 
In view of this, the present flow configuration with its thin 
boundary layers along the vertical walls should be regarded as a 
severe test case for the lattice-Boltzmann scheme. 

To enable a quantitative comparison of the present results 
with the benchmark data repOrted by Henkes (1990) and Janssen 
(1994), four different quantities are listed in Table 1 for various 
grids: the average heat transfer through the vertical wall in terms 
of the Nusselt number Nu; the maximum of the vertical velocity 
v along a horizontal line through the cavity center; the maximum 
of the horizontal velocity u along a vertical line through the 
cavity center; and the dimensionless vertical temperature gradient 
S in the center of the cavity. Following Janssen, Nu and S are 
defined as: 

1 H 
f H  , (36)  Nu = - A-T J0 (OxT)x= o dy S = ~ - ~ ( a y T ) . = y = ~  n 

Table 1 Flow quanti t ies for various grids compared to benchmark data reported by Janssen (1994) using a f inite d i f ference/volume 
technique and Le Qu6r6 (1991) using a pseudospectral method with Chebyshev polynomials.  In all s imulat ions, ~/2 = ~t3 = 0.80 (see 
Equations 18 and 27) 

Grid NuRa- 1/4 Vmax Umax S 
(g~ATH) v2 (g~ATv) 1/3 

30 x 30 0.2812 0.2448 0.7768 0.8662 
60 x 60 0.2732 0.2581 0.8071 0.9087 

120 x 120 0.2766 0.2615 0.8133 0.9159 
240 x 240 0.2783 0.2621 0.8144 0.9176 
480 x 480 0.2786 0.2623 0.8145 0.9179 

Janssen(1994) 
60 x 60 0.2789 0.2633 0.8145 0.9190 

120 x 120 0.2790 0.2621 0.8144 0.9144 
240 x 240 0.2791 0.2618 0.8146 0.9132 

Le Qu6r6 (1991) 
72 x 72 0.2791 0.2618 0.8146 
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var ious vert ical posi t ions y/H;  the results are taken f rom the 
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our opinion, this relatively minor influence of the higher-order 
modes is due to the fact that the flow is laminar. In a turbulent 
flow where spatial variations and local gradients become much 
larger and where the fluid motion becomes (highly) irregular, the 
higher-order modes are presumably more important and proper 
minimization of these modes is required. 

Finally, in Figures 5 and 6 the vertical velocity and tempera- 
ture profiles in the boundary layer along the hot wall are shown 
as a function of x/H for various vertical positions y/H. The 
vertical velocity is scaled the same as in Table 1; whereas, the 
temperature is scaled with the temperature difference AT be- 
tween the hot and cold wall. The boundary layer gradually 
develops and becomes thicker with increasing height. The x/H- 
location of extreme vertical velocity is shifted away from the 
wall with increasing y/H. The maximal vertical velocity is 
found around y /H = 0.5. 

Conclusions 

The scaling of the quantities in Table 1 is suggested by Henkes, 
who showed that these scales are appropriate in the limit Ra ~ ~. 

At high spatial resolutions, the results of the lattice-Boltz- 
mann simulations agree very well with the benchmark data of Le 
Qu~r6 (1991). Le Qu6r6 showed that his data are very accurate, 
because he found no change of the quantities in at least four 
significant digits from a grid refinement of 48 × 48 to 72 × 72 
spectral functions. The computations by Janssen (1994) are per- 
formed using nonuniform grids that are strongly refined near the 
walls. At moderate resolutions (602 and 1202), his results, 
therefore, agree better with those reported by Le Qu6r6 (1991) 
than the results obtained with the lattice-Boltzmann scheme. In 
the core region of the flow, the stratification parameter S is 
slightly larger in the lattice-Boltzmann simulations compared to 
the results reported by Janssen (1994). This might be related to 
the much finer resolution in the core region of the present 
simulations because of the applied uniform grids. 

The influence of the higher-order modes on the results of the 
lattice-Boltzmann simulations is investigated by varying the 
coefficients ~/2 and "~3 within the range from 0.0 to 0.95 for a 
fixed resolution of 120 × 120 grid points. It has been found that 
the changes of the parameter values listed in Table 1 are limited 
to the fourth digit in NuRa -1/4, S and the vertical velocity 
component. The strongest influence is found in the horizontal 
velocity component, where changes occur up to the third digit. In 
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Figure 6 As in Figure 5, but for the temperature 
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The results of the simulations presented in this paper demonstrate 
that the lattice-Boltzmann scheme can be used successfully to 
study flows with scalar transport. The data for laminar free 
convective cavity flow reported here are in excellent agreement 
with numerical benchmark data reported earlier. The limitation to 
uniform grids seems to be a disadvantage of the lattice-Boltz- 
mann scheme, but is in principle, inherent to it. This disadvan- 
tage is partly compensated for by the low computational effort 
per grid point. Recently, however, nonuniform extensions of the 
lattice-Boltzmann scheme have also become available, using a 
two-grid approach to alleviate the constraint of the original 
scheme to uniform and regular lattices. Narmelli and Succi (1992) 
and Succi and Nannelli (1994) showed that these extensions 
perform reasonably well in 2-D simulations, provided the under- 
lying interpolation scheme is of sufficiently high order to avoid 
extensive numerical diffusion. The greater flexibility and more 
accurate representation of complex geometries, however, are 
gained at the expense of increased computational effort per grid 
point. Rigorous testing of the nonuniform lattice-Boltzmann 
scheme and actual application of it to 3-D problems will be 
unavoidable to garantee future success of this extension. 

On the other hand, we feel that the use of an uniform grid and 
the related high degree of isotropy of the scheme will prove to be 
favorable in large-eddy simulations where effects of scales smaller 
than the grid spacing must be modeled. Some preliminary results 
of large-eddy and direct numerical simulations of fully developed 
turbulent channel flow with heat transfer are available and com- 
pare favorably well with data available from simulations using 
different numerical techniques and with data available from 
experiments. The details and results of these simulations are 
beyond the scope of the present paper, but they indicate that the 
lattice-Boltzmann scheme is also suited for detailed, time-depen- 
dent, simulations of turbulent flows. In particular, the inherent 
capability to implement and run the scheme with great efficiency 
on massively parallel computer platforms turns out to be very 
promising for future large-scale simulations. 

A final remark concerns the present implementation of the 
scalar transport equation in terms of scalar densities Qi. This 
transport scheme is not very efficient with respect to computer 
memory usage. The ratio of physical modes available from Qi, 
such as C, OxC, and 0yC, and the number of entries stored in al 
is much less (3 /9  in 2-D and 4 /18  in 3-D) than for the mass 
densities N/ (6 /9  and 10/18 in 2-D and 3-D, respectively). In 
view of this, more efficient scalar transport schemes will be 
considered in the future as well. 
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